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Abstract
Carbonyl sulfide (OCS) molecules in superfluid helium-4 clusters have been
studied by path integral hybrid Monte Carlo methods. A new technique was
developed to treat the quantum rotational degree of freedom of the molecules
in hybrid Monte Carlo methods; this is referred to as a ‘Legendre potential
technique’. Then, our method was applied to OCS-doped helium clusters.
It was found that although the molecule is solvated inside the cluster, the
calculated orientational correlation function exhibits free-rotor-type behaviour.
The estimated effective rotational constant was in good agreement with the
experimental value.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Chemical processes in condensed helium-4 have recently been shown to exhibit various exotic
properties due to superfluidity of the medium [1]. An impressive example is provided by
carbonyl sulfide (OCS) molecules dissolved in helium nanodroplets [1]. The infrared spectrum
of the OCS molecules inside 4He (boson) and 3He (fermion) droplets has been measured. For
the 4He droplets, sharp rotational lines were observed, whereas for the 3He droplets only a
broad line was found. The former behaviour implies that molecules rotate freely in the droplets;
the latter may be qualitatively understood in terms of conventional rotational diffusion in the
solution. Since the intermolecular interactions are virtually identical for the two systems, the
difference between the spectra originates from the difference in quantum statistics between
the two systems. The helium-4 droplets at the state point investigated are expected to be in a
superfluid state [2] characterized by vanishing ‘viscosity’; thus, the free-rotor behaviour can be
attributed to the superfluidity at a molecular level. This example indicates that the macroscopic
quantum phenomena such as superfluidity have dramatic effects on the microscopic processes
in the quantum medium.
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To date, the OCS-doped helium clusters at finite temperature have been theoretically
studied by path integral Monte Carlo methods [3]. In that study, the rotational fluctuation of
the molecules could not be directly accessed, since the OCS molecule was treated as a classical
object fixed at the origin. In the present study, we have extended our path integral hybrid Monte
Carlo method [4] to treat quantum rotation of the molecules. Then, the method was applied
to the OCS-doped helium clusters to probe the quantum rotational fluctuation of the solvated
molecules.

2. Method

We consider a system consisting of N helium-4 atoms obeying Bose–Einstein statistics and an
OCS molecule modelled as a rigid rotor. The partition function of the system Z at an inverse
temperature β = 1/kBT is written in discretized path integral form as [2, 5]

Z = 1

N!

∑

P

∫
· · ·

∫ M∏

s=1

dR(s) dΩ(s)
M∏

s=1

ρ
(
R(s),Ω(s), R(s+1),Ω(s+1); �τ

)
(1)

where �τ = β/M is the imaginary time step and ρ(�τ) is the short time (or high
temperature) density matrix of the system. Here, R(s) denotes the 3(N + 1)-dimensional
position vector, including the molecule’s centre-of-mass position, and �(s) represents the
molecule’s orientation in the laboratory frame; the superscript s runs from 1 to M , indicating
the corresponding imaginary time slice. The permutation P is included in the boundary
condition of the path: R(M+1) = PR(1). In the present study, the He–He contribution in
the density matrix is represented using the pair product form of the exact two-body density
matrices, and the He molecule contribution is approximated using the standard factorization
technique accurate up to O(�τ 4) [5]. In this expression, the rotational density matrix of the
molecule is included as [5]

ρrot
(
Ω(s),Ω(s+1); �τ

) =
∞∑

J=0

2J + 1

4π
Pl (cos γ ) e−�τ B J (J +1) (2)

where Pl is a Legendre function and γ is an angle between the molecular axes of two successive
time slices. The parameter B is the rotational constant of the molecule related to the moment of
inertia I , B = h̄2/2I . In order to incorporate the molecular rotation in the hybrid Monte Carlo
algorithm, we define the following ‘potential function’ using the rotational density matrix:
ρrot(�τ) ≡ e−�τW rot(Ω,Ω′). We refer to W rot as a ‘Legendre potential of rotation’. In the
hybrid Monte Carlo case, an equation of motion is needed to generate trial configurations. We
introduce a fictitious angular momentum and a fictitious moment of inertia to sample rotational
fluctuations. Then, we integrate this technique into our hybrid Monte Carlo algorithms for
correlated Bose liquids [4]. Further details on the method will be presented elsewhere [6].

3. Computational details

The calculated system consists of N = 64 helium-4 atoms and an OCS molecule at
temperature 0.37 K. The number of discretizations is chosen to be M = 216, corresponding
to 1/�τ = 80 K. The rotational constant of the OCS molecule is taken from a gas-phase
experimental value, B = 0.202 86 cm−1 [7]. The Aziz potential [8] is used as a pairwise
interaction between two helium atoms. The morphed potential of Howson and Hutson [9]
is adopted for the He–OCS interaction. Path integral hybrid Monte Carlo calculations are
performed for the system obeying Bose–Einstein statistics. For comparison, the system
obeying Maxwell–Boltzmann statistics is also examined.
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Figure 1. Radial density profiles of helium atoms measured from the centre of mass of the OCS
molecule (upper panel). The blue line is for the system obeying Bose–Einstein statistics ρB−E(r)
and the red line for the system obeying Maxwell–Boltzmann statistics ρM−B(r). Difference of the
two radial density profiles (lower panel): �ρ(r) = ρB−E(r) − ρM−B(r).

4. Results

We show the radial density profile of the helium atoms around the centre of mass of the OCS
molecule in figure 1. First, we discuss the results on the bosonic cluster. An oscillatory structure
of the solvent density is found around the OCS molecule; it indicates that the solvation shell
structure is well developed around the molecule. Since the density of the bulk liquid helium
is ρ = 0.022 Å−3, the primary peak is about twice denser than ρ. A subpeak at r = 3.7 Å is
found in the primary peak. This substructure comes from the minimum of the OCS–helium
interaction located near the carbon atom; see figure 2 in [9] for details on the interaction
potential. We can define the first solvation shell using the minimum of ρ(r) at r = 5.9 Å.
The coordination number in the first solvation shell was calculated to be 20.5. As seen in the
figure, the difference of the quantum statistics has a minor effect on the density profile. The
bosonic exchange of the helium atoms is found to make the density profile broader; the largest
effect is around the subpeak at r = 3.7 Å. Here, we briefly comment on the effect of the
Bose statistics on the structure of the helium clusters. As found in radial distribution functions
of liquid helium-4 [2], the bosonic exchange has little effect on structural quantities related
to the diagonal component of the density matrix. A great effect can be found in properties
related to the off-diagonal component including imaginary time correlations. At the end of this
section, this will be demonstrated by analysing the orientational fluctuation of the molecule in
imaginary time.

It is interesting to decompose the above density profile using the length of exchange cycles
among the helium atoms, since the superfluid state of the clusters is characterized by the long
exchange cycles, comparable to the system size [2]. We denote the density profile of the helium
atoms participating in the exchange cycle with the length P (for P = 1, . . . , 5) as ρ(P)(r).
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Figure 2. Radial density profiles of helium atoms measured from the centre of mass of the OCS
molecule. The black solid line is for the total density profile, the blue line for ρ(6)(r), and the red
line for ρ(1)(r). Black dashed lines are for ρ(P)(r) for P = 2, . . . , 5. The definition of ρ(P)(r) is
given in the text.

In the case of the superscript P = 6, ρ(6) represents the density profile of the helium atoms
participating in the cycle of length P � 6. The decomposed density profile is presented in
figure 2. It is found that the total density profile is composed of two major components: one
is ρ(1) and the other is ρ(6). The components from short exchange cycles P = 2, . . . , 5 add
small contributions to the total density profile. Both components, ρ(1) and ρ(6), have shell
structures reflecting the total density profile. According to Kwon et al [3], we may regard∑5

P=1 ρ(P)(r) as a local disturbance of the superfluidity. As seen in the figure, the dominant
contribution of the non-superfluid component is found in the first solvation shell; the highest
peak is located at the substructure of the total density profile where the OCS–helium interaction
is minimum. The coordination number of the non-superfluid component in the first solvation
shell was calculated to be 3.9; then, 19% in the first coordination shell can be assigned to be the
non-superfluid component by this definition, and the complementary superfluid component is
81% in the first solvation shell.

Next, we present the results on dynamical correlations of the OCS molecule. First, we
show translational motion of the centre of mass of the OCS molecule. The translational
correlation is well described by the following mean square correlation function:

R2(τ ) = 〈|r(τ ) − r(0)|2〉 (3)

where r(τ ) denotes the centre-of-mass position of the OCS molecule at an imaginary time τ .
This correlation function is periodic in [0, β]. The correlation function at τ = β/2 reflects the
quantum delocalization of the centre of mass of the molecule. For the free OCS molecule, the
correlation function can be expressed analytically [10]:

R2 (τ ) = 3βh̄2

m

[
τ

β

(
1 − τ

β

)]
(4)

with m denoting the total mass of the OCS molecule. The calculated results are presented in
figure 3. Since the molecule interacts with surrounding helium atoms, the spatial fluctuation
is suppressed compared with that of the free OCS molecule. Interestingly, R(β/2) for the
bosonic cluster is larger than that for the Boltzmann-type cluster: R(β/2) = 0.93 Å for the
bosonic cluster, and 0.84 Å for the Boltzmann-type cluster. This indicates that the effect of
the confinement by the surrounding solvent atoms is weaker in the case of the bosonic cluster.
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Figure 3. Root mean square correlation function R(τ ) of the centre of mass of the OCS molecule
as a function of the imaginary time τ . The blue line is for the system obeying Bose–Einstein
statistics, the red line for the system obeying Maxwell–Boltzmann statistics, and the black line for
the free OCS.

Finally, we present the results regarding the rotational motion of the molecule. The
rotational fluctuation can be probed by the following orientational correlation function:

C(τ ) = 〈e(τ ) · e(0)〉 (5)

where e(τ ) is a unit vector proportional to the molecular axis at an imaginary time τ . This
correlation function is again periodic in the imaginary time. For the free OCS with a rotational
constant B , we can write C(τ ) in the following analytical form [11]:

C (τ ) = 1

Z

{
e−2Bτ +

∑

J>0

e−βB J (J +1) [
JeB2J τ + (J + 1) e−B2(J +1)τ

]
}

(6)

with Z = ∑∞
J=0 (2J + 1)e−βB J (J +1). The calculated correlation functions are shown in

figure 4. For comparison, the correlation function for an isolated OCS is also presented, which
was calculated using equation (6) with the gas-phase experimental value B = 0.202 86 cm−1.
As in the translational correlation, the solute–solvent interaction suppresses the orientational
fluctuation compared with that for the gas-phase OCS. Unlike the translational motion,
however, the bosonic correlation of the solvent helium is found to have large effects on the
orientational correlation; C(τ ) for the bosonic cluster shows qualitatively different behaviour
compared with the Boltzmann-type counterpart. Using the correlation function for the
bosonic cluster, we estimated an effective rotational constant Beff of the solvated OCS in
such a way that the value of C(β/2) was fitted to the free-rotor expression, equation (6),
at τ = β/2; in this procedure, B was treated as a fitting parameter. The resulting value was
Beff = 0.083 cm−1, which is in good agreement with the experimental value of the nanodroplets
Beff = 0.0732 cm−1 [12]. In figure 4, we present the free-rotor correlation function with the
estimated Beff . We find that C(τ ) for the solvated OCS in the bosonic cluster is well described
by the free-rotor C(τ ) with Beff . This demonstrates that our method realizes the effective free
rotation of the OCS molecule in the superfluid cluster.

5. Concluding remarks

We have developed path integral hybrid Monte Carlo methods for molecule-doped helium
clusters. To handle quantum rotational motion in the algorithm, we introduced a new method
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Figure 4. Orientational correlation function C(τ ) of the OCS molecule as a function of the
imaginary time τ . The blue solid line is for the system obeying Bose–Einstein statistics, the red
line for the system obeying Maxwell–Boltzmann statistics, and the black line for the free OCS with
the gas-phase rotational constant B . The blue dashed line is for the correlation function of the free
OCS with Beff estimated from the value of the bosonic C(β/2).

called the Legendre potential technique. Then, the experimentally observed effective free
rotation of the OCS molecule in superfluid clusters was successfully reproduced. For further
study, the calculated rotational constant should be connected to the microscopic solvation
structure of the molecule. Although the microscopic superfluid density given by Kwon et al
[3] provides qualitative features of the quantum solvation, more elaborate estimation of the
local superfluid density may be required for quantitative discussion [13]. Detailed analysis on
this issue will be presented in the near future.
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